Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles

نویسندگان

  • Wen-Jeng Ho
  • Shih-Ya Su
  • Yi-Yu Lee
  • Hong-Jhang Syu
  • Ching-Fuh Lin
چکیده

Performances of textured crystalline-silicon (c-Si) solar cells enhanced by silver nanoparticles (Ag-NPs) and indium nanoparticles (In-NPs) plasmonic effects are experimentally demonstrated and compared. Plasmonic nanoparticles integrated into textured c-Si solar cells can further increase the absorption and enhance the short-circuit current density (Jsc) of the solar cell. To examine the profile of the proposed metallic particles, the average diameter and coverage of the In-NPs (Ag-NPs) at 17.7 nm (19.07 nm) and 30.5% (35.1%), respectively, were obtained using scanning electron microscopy. Optical reflectance and external quantum efficiency response were used to measure plasmonic light scattering at various wavelengths. Compared to a bare reference cell, the application of In-NPs increased the Jsc of the cells by 8.64% (from 30.32 to 32.94 mA/cm²), whereas the application of Ag-NPs led to an increase of 4.71% (from 30.32 to 31.75 mA/cm²). The conversion efficiency of cells with embedded In-NPs (14.85%) exceeded that of cells with embedded Ag-NPs (14.32%), which can be attributed to the broadband plasmonic light scattering of the In-NPs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Light Scattering in Textured Silicon Solar Cells with Indium Nanoparticles from Normal to Non-Normal Light Incidence

In this study, we sought to improve the light trapping of textured silicon solar cells using the plasmonic light scattering of indium nanoparticles (In NPs) of various dimensions. The light trapping modes of textured-silicon surfaces with and without In NPs were investigated at an angle of incidence (AOI) ranging from 0° to 75°. The optical reflectance, external quantum efficiency (EQE), and ph...

متن کامل

External quantum efficiency response of thin silicon solar cell based on plasmonic scattering of indium and silver nanoparticles

This study characterized the plasmonic scattering effects of indium nanoparticles (In NPs) on the front surface and silver nanoparticles (Ag NPs) on the rear surface of a thin silicon solar cell according to external quantum efficiency (EQE) and photovoltaic current-voltage. The EQE response indicates that, at wavelengths of 300 to 800 nm, the ratio of the number of photo-carriers collected to ...

متن کامل

Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (lc-Si:H) solar cells can be enhanced by 4.5 mA/cm with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The lc-Si:H solar cells deposited...

متن کامل

Plasmonic Light-trapping and Quantum Efficiency Measurements on Nanocrystalline Silicon Solar Cells and Silicon-On-Insulator Devices

Quantum efficiency measurements in nanocrystalline silicon (nc-Si:H)solar cells deposited onto textured substrates indicate that these cells are close to the "stochastic lighttrapping limit" proposed by Yablonovitch in the 1980s. An interesting alternative to texturing is "plasmonic" light-trapping based on non-textured cells and using an overlayer of metallic nanoparticles to produce light-tra...

متن کامل

Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.

We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015